

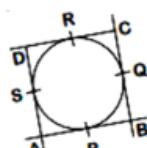


**COMMON PRE-BOARD EXAMINATION  
MATHEMATICS (STANDARD)–Code No. 041**  
**CLASS-X-(2025-26)**



**SET: 2**

**Time allowed: 3 Hrs**


**Marking Scheme**

**Maximum Marks: 80**

| <b>(Section A)</b><br><b>Section A consists of 20 questions of 1 mark each.</b> |                                                           |   |
|---------------------------------------------------------------------------------|-----------------------------------------------------------|---|
| 1.                                                                              | (D) $\sqrt{5}$                                            | 1 |
| 2.                                                                              | (A) 1 : 2                                                 | 1 |
| 3.                                                                              | (C) rational number                                       | 1 |
| 4.                                                                              | (B) 6                                                     | 1 |
| 5.                                                                              | (A) 2AB                                                   | 1 |
| 6.                                                                              | (A) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ | 1 |
| 7.                                                                              | (C) $10k^2$                                               | 1 |
| 8.                                                                              | (C) 3                                                     | 1 |
| 9.                                                                              | (C) 8 cm                                                  | 1 |
| 10.                                                                             | (B) $\frac{4}{35}$                                        | 1 |
| 11.                                                                             | (C) 7                                                     | 1 |
| 12.                                                                             | (C) 13                                                    | 1 |
| 13.                                                                             | (C) $\frac{\sqrt{b^2-a^2}}{b}$                            | 1 |
| 14.                                                                             | (D) $\frac{41}{40}$                                       | 1 |
| 15.                                                                             | (C) $83^\circ$                                            | 1 |
| 16.                                                                             | (A) $6\pi cm^2$                                           | 1 |
| 17.                                                                             | (A) $R_1 + R_2 = R$                                       | 1 |
| 18.                                                                             | (B) $\frac{1}{2}$                                         | 1 |



**(Section – C)**  
**Section C consists of 6 questions of 3 marks each.**

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 26. | <p>Let <math>(2 + 5\sqrt{3})</math> be rational</p> $\Rightarrow 2 + 5\sqrt{3} = \frac{p}{q}, \text{ where } p \text{ & } q \text{ are integral co-primes & } q \neq 0$ $\Rightarrow 5\sqrt{3} = \frac{p}{q} - 2$ $\Rightarrow \sqrt{3} = \frac{1}{5} \left( \frac{p}{q} - 2 \right)$ <p>Here, <i>LHS</i> is irrational but <i>RHS</i> is rational</p> <p>This is a contradiction</p> <p>Therefore, our assumption is wrong</p> <p>Hence, <math>(2 + 5\sqrt{3})</math> is irrational</p>                                 | $\frac{1}{2}$<br>$\frac{1}{2}$<br>$1$<br>$\frac{1}{2}$<br>$\frac{1}{2}$                                    |
| 27. | $\alpha + \beta = 10 \Rightarrow \frac{5}{a} = 10 \Rightarrow a = \frac{1}{2}$ $\alpha\beta = 10 \Rightarrow \frac{c}{a} = 10 \Rightarrow c = 5$                                                                                                                                                                                                                                                                                                                                                                         | $1\frac{1}{2}$<br>$1\frac{1}{2}$                                                                           |
| 28. | <p>Total number of numbers = <math>(123 - 11) + 1 = 113</math></p> <p>(i) <math>P(\text{perfect square}) = \frac{8}{113}</math></p> <p>(ii) <math>P(\text{multiple of 7}) = \frac{16}{113}</math></p> <p><b>(OR)</b></p> <p>(i) <math>P(\text{non-face card}) = \frac{52-12}{52} = \frac{40}{52} = \frac{10}{13}</math></p> <p>(ii) <math>P(\text{a black king}) = \frac{2}{52} = \frac{1}{26}</math></p> <p>(iii) <math>P(\text{neither a red nor a jack}) = \frac{52-28}{52} = \frac{24}{52} = \frac{6}{13}</math></p> | $1$<br>$1$<br>$1$<br>$(\text{OR})$<br>$1$<br>$1$<br>$1$<br>$1$                                             |
| 29. | <p>Since, Tangents from the same external point are equal in length.</p> $AP = AS \rightarrow (1) \quad BP = BQ \rightarrow (2) \quad CR = CQ \rightarrow (3) \quad DR = DS \rightarrow (4)$ <p>Adding equations (1 + 2 + 3 + 4)</p> $AP + BP + CR + DR = AS + BQ + CQ + DS$ $AB + CD = AD + BC$ $6 + 8 = AD + 9 \Rightarrow AD = 14 - 9 = 5 \text{ cm}$                                                                                                                                                                 | <br>$1$<br>$1$<br>$1$ |
| 30. | $\text{LHS} = \sqrt{\frac{(1 + \sin A) \times (1 + \sin A)}{(1 - \sin A) \times (1 + \sin A)}} = \sqrt{\frac{(1 + \sin A)^2}{1 - \sin^2 A}} = \sqrt{\frac{(1 + \sin A)^2}{\cos^2 A}} = \frac{1 + \sin A}{\cos A}$ $= \frac{1}{\cos A} + \frac{\sin A}{\cos A} = \sec A + \tan A = \text{RHS}$                                                                                                                                                                                                                            | $\frac{1}{2} \text{ each}$<br>$\frac{1}{2} + \frac{1}{2}$                                                  |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 31. | <p>Assuming speeds as <math>x</math> km/hr and <math>y</math> km/hr,<br/>         Distance = Speed <math>\times</math> Time, we get <math>16 = (2x + 2y) \Rightarrow x + y = 8 \rightarrow (1)</math><br/>         Similarly, <math>16 = (8x - 8y) \Rightarrow x - y = 2 \rightarrow (2)</math><br/>         Solving, <math>x = 5</math> and <math>y = 3</math><br/>         The walking speeds are <b>5km/h</b> and <b>3km/h</b></p> <p><b>(OR)</b></p> <p>For no solutions, <math>\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \Rightarrow \frac{k}{3} = \frac{k-2}{1} \neq \frac{1}{5}</math><br/> <math>\Rightarrow k = 3</math> and <math>\frac{1}{1} \neq \frac{1}{5}</math></p> <p>Since <math>1 \neq \frac{1}{5}</math>, the condition for no solutions is satisfied for <math>k = 3</math>.</p> | $\frac{1}{2}$<br>$1$<br>$1$<br>$\frac{1}{2}$<br>$\frac{1}{2} + 1$<br>$1$<br>$\frac{1}{2}$ |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|

**(Section – D)**  
**Section D consists of 4 questions of 5 marks each**

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 32. | <p>Diameter of base = 3.5m, radius = <math>7/4</math>m, Height of the cylindrical part = <math>14/3</math> m</p> <p>(i) Volume of vessel = <math>\pi r^2 h + \frac{2}{3} \pi r^3 = \pi r^2 \left( h + \frac{2}{3} r \right)</math><br/> <math>= \frac{22}{7} \times \frac{7}{4} \times \frac{7}{4} \left( \frac{14}{3} + \frac{2}{3} \times \frac{7}{4} \right) = \frac{2695}{48} = 56.15 \text{ m}^3</math></p> <p>(ii) CSA of vessel = <math>2\pi r h + 2\pi r^2 = 2\pi r(h + r)</math><br/> <math>= 2 \times \frac{22}{7} \times \frac{7}{4} \times \left( \frac{14}{3} + \frac{7}{4} \right) = \frac{847}{12} = 70.58 \text{ m}^2</math></p>                                                                                                                                                                                                                                                                                                                                            | $1$<br>$1+1$<br>$1$<br>$1$                                                                                                                         |
| 33. | <p><b>Statement :</b> If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, then the line divides the two sides in the same ratio.</p> <p>Given: Trapezium ABCD, <math>AB \parallel CD</math>, diagonals AC and BD intersect at O.</p> <p>To prove: <math>\frac{DP}{PA} = \frac{CQ}{BQ}</math></p> <p>Construction: Draw <math>PQ \parallel AB</math> through O to meet AD and BC at P and Q respectively</p> <p>Proof: <math>PQ \parallel AB</math> and <math>AB \parallel CD \Rightarrow PQ \parallel CD</math></p> <p>In <math>\triangle DAB</math>, <math>PO \parallel AB \therefore \frac{DP}{PA} = \frac{DO}{BO}</math> (BPT) —(1)</p> <p>Similarly, in <math>\triangle BCD</math>, <math>OQ \parallel CD</math></p> <p><math>\Rightarrow \frac{BQ}{QC} = \frac{BO}{DO} \Rightarrow \frac{QC}{BQ} = \frac{DO}{BO}</math> —(2)</p> <p>from (1) &amp; (2), <math>\frac{DP}{PA} = \frac{QC}{BQ}</math></p> <p>Hence the result.</p> | $1$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$1$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$ |
| 34. | <p>Let the unit digit of the number be <math>y</math> and the tens digit of this number be <math>x</math>.<br/>         So, the number is <math>10x + y</math> and the number interchanging the digits = <math>10y + x</math></p> <p>Given <math>xy = 12 \dots(1)</math></p> <p>Also, <math>(10x + y) + 36 = 10y + x \Rightarrow x = (y - 4) \dots(2)</math></p> <p>On substituting the value of <math>x</math> in equation (1), we get,<br/> <math>y \cdot (y - 4) = 12 \Rightarrow y^2 - 4y - 12 = 0 \Rightarrow y = 6 \text{ or } -2</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$1$<br>$1$                                                                                      |

|                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| <p>But the unit digit of the two-digit number cannot be negative.<br/> <math>\Rightarrow y = 6 \Rightarrow x = 6 - 4 \Rightarrow x = 2</math><br/> <math>\Rightarrow 10x + y = 10 \times 2 + 6 = 26</math><br/> Hence the number is 26.</p>                                              | <p>(OR)</p>                                                                                                                                                                                                                                                                              | <p>For the first equation, <math>x^2 + kx + 64 = 0</math>:<br/> The discriminant is <math>\Delta_1 = k^2 - 4(1)(64) = k^2 - 256</math><br/> For real roots, we must have <math>k^2 - 256 \geq 0 \Rightarrow k^2 \geq 256</math><br/> <math>\Rightarrow k \leq -16</math> or <math>k \geq 16</math><br/> Since the problem asks for positive values of k, we consider <math>k \geq 16 \rightarrow (1)</math></p> | <p>(OR)</p>              |
| <p>For the second equation, <math>x^2 - 8x + k = 0</math>:<br/> The discriminant is <math>\Delta_2 = (-8)^2 - 4(1)(k) = 64 - 4k</math><br/> For real roots, we must have <math>64 - 4k \geq 0</math><br/> <math>\Rightarrow 64k \geq 4k \Rightarrow 16 \geq k \rightarrow (2)</math></p> | <p>For the second equation, <math>x^2 - 8x + k = 0</math>:<br/> The discriminant is <math>\Delta_2 = (-8)^2 - 4(1)(k) = 64 - 4k</math><br/> For real roots, we must have <math>64 - 4k \geq 0</math><br/> <math>\Rightarrow 64k \geq 4k \Rightarrow 16 \geq k \rightarrow (2)</math></p> | <p>The only value that satisfies both inequalities is when k is exactly equal to 16.<br/> The positive value of k for which both equations will have roots is 16.</p>                                                                                                                                                                                                                                           | <p>1</p>                 |
| <p>35.</p>                                                                                                                                                                                                                                                                               | <p>The average performance of all countries from the graph is</p>                                                                                                                                                                                                                        | $\frac{10 \times 13 + 30 \times 19 + 50 \times 6 + 70 \times 4}{13 + 19 + 6 + 4} = \frac{130 + 570 + 300 + 280}{42} = \frac{1280}{42} = 30.48\%.$ <p><math>\Rightarrow</math> Japan performed better than the average performance.</p>                                                                                                                                                                          | <p>2+1+1<br/>1</p>       |
| <p>(OR)</p>                                                                                                                                                                                                                                                                              | <p>Cf values <math>\rightarrow p, p+15, p+40, p+60, p+q+60, p+q+68, p+q+78</math><br/> <math>\Rightarrow p + q + 78 = 90 \Rightarrow p + q = 12</math><br/> <math>\frac{N}{2} = \frac{90}{2} = 45</math></p>                                                                             | <p>(OR)</p>                                                                                                                                                                                                                                                                                                                                                                                                     | <p>1<br/>1<br/>½</p>     |
| <p>Median = <math>L + \frac{\left(\frac{N}{2} - c.f.\right)}{f} \cdot h \Rightarrow 50 = 50 + \frac{45 - (p + 40)}{20} \cdot 10</math></p>                                                                                                                                               | <p><math>\Rightarrow 0 = \frac{(5 - p)}{2} \Rightarrow 5 - p = 0 \Rightarrow p = 5</math></p>                                                                                                                                                                                            | <p><math>Now q = 12 - p = 12 - 5 \Rightarrow q = 7</math></p>                                                                                                                                                                                                                                                                                                                                                   | <p>½ + 1<br/>½<br/>½</p> |

## **(Section – E)**

**Section E consists of 3 case study-based questions of 4 marks each.**

|     |                                                                                                                                                                    |                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 36. | <p>(i) <math>a_1 = 20 + 4(1)a_1 = 20 + 4a_1 = 24</math><br/>         The number on the first spot is <b>24</b>. (This is also the first term, <math>a</math>).</p> | 1                               |
|     | <p>(ii) Let <math>a_n = 112 \Rightarrow 20 + 4n = 112</math><br/> <math>4n = 92 \Rightarrow n = 23</math></p>                                                      | $\frac{1}{2} + 1 + \frac{1}{2}$ |
|     | <p>The spot numbered as 112 is the <b>23<sup>rd</sup> spot</b>.</p>                                                                                                |                                 |
|     | <p><b>(OR)</b></p> $S_n = \frac{n}{2}[2a + (n - 1)d] \Rightarrow S_{10} = \frac{10}{2}[2(24) + (10 - 1)4]$ $S_{10} = 5[48 + 36] \Rightarrow S_{10} = 420$          | <b>(OR)</b>                     |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|     | <p>(iii) <math>a_n = 20 + 4n \Rightarrow a_{n-2} = 20 + 4(n-2)</math><br/> <math>a_{n-2} = 20 + 4n - 8 \Rightarrow a_{n-2} = 12 + 4n</math><br/> The number on the <math>(n-2)^{\text{th}}</math> spot is <math>12 + 4n</math>.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                |
| 37. | <p>(i) 4 m<br/> (ii) <math>\sin(60^\circ) = \frac{BD}{BC} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4}{L}</math><br/> <math>L = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3}</math> m<br/> The length of the ladder should be <math>\frac{8\sqrt{3}}{3}</math> m<br/> <br/> (iii) <math>\tan(60^\circ) = \frac{BD}{DC} \Rightarrow \sqrt{3} = \frac{4}{x} \Rightarrow x = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}</math> m<br/> Using the approximate value <math>\sqrt{3} \approx 1.732</math>: <math>x \approx \frac{4 \times 1.732}{3} \approx \frac{6.928}{3} \approx 2.309</math> m<br/> The foot of the ladder should be placed <math>\frac{4\sqrt{3}}{3}</math> m (or approximately 2.31 m) away from the foot of the pole.<br/> <b>(OR)</b> <ul style="list-style-type: none"> <li>Height to be reached (BD): 4 m (Opposite side)</li> <li>Distance from the foot of the pole (DC): 4 m (Adjacent side)</li> <li>Ladder length (BC): Hypotenuse (<math>L'</math>).</li> </ul> Using the Pythagorean theorem:<br/> <math>L'^2 = (BD)^2 + (DC)^2 \Rightarrow L'^2 = (4)^2 + (4)^2 \Rightarrow L' = 4\sqrt{2}</math> m<br/> The length of the ladder is <math>4\sqrt{2}</math> m </p>                                                                                                                                                                                                                      | 1<br>1<br>2<br>2 |
| 38. | <p>(i) distance formula: <math>d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}</math><br/> <ul style="list-style-type: none"> <li>School S(3, 4) <math>\rightarrow (x_1, y_1)</math></li> <li>Coaching Centre C(-2, 8) <math>\rightarrow (x_2, y_2)</math></li> </ul> <math>d = \sqrt{(-2 - 3)^2 + (8 - 4)^2} \Rightarrow d = \sqrt{(-5)^2 + (4)^2} \Rightarrow d = \sqrt{25 + 16} d \Rightarrow = \sqrt{41}</math><br/> The shortest distance between her school and coaching centre is <math>\sqrt{41}</math> units.</p> <p>(ii) • A(-2, 4) <math>\rightarrow (x_1, y_1)</math><br/> <ul style="list-style-type: none"> <li>B(3, 4) <math>\rightarrow (x_2, y_2)</math></li> <li>D(1, 4) <math>\rightarrow (x, y)</math></li> <li>Ratio = <math>k</math>: 1</li> </ul> Using the <b>section formula</b> for the <math>x</math>-coordinate: <math>x = \frac{kx_2 + x_1}{k+1} \Rightarrow 1 = \frac{k(3) + 1(-2)}{k+1}</math><br/> <math>(k+1) = 3k - 2 \Rightarrow 3 = 2k \Rightarrow k = \frac{3}{2}</math><br/> (iii) The area covered by the perpendicular lines from points A and B to the <math>x</math>-axis, the line segment AB, and the <math>x</math>-axis itself forms a rectangle with <ul style="list-style-type: none"> <li>Length <math>l = 5</math> units</li> <li>Width <math>w = 4</math> units</li> </ul> Area = <math>l \times w = 5 \times 4 = 20</math> sq. units </p> <p><b>(OR)</b></p> | 1<br>1<br>2<br>2 |

|                                                                                                                                                                                                                                                                                                                |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <p>The mid-point of AB, <math>M = \left( \frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right)</math><br/> <math>M = \left( \frac{-2+3}{2}, \frac{4+4}{2} \right) \Rightarrow M = \left( \frac{1}{2}, 4 \right)</math><br/>         Image of M with respect to X axis = <math>\left( \frac{1}{2}, -4 \right)</math></p> | 2 |
| <b>End of the Marking Scheme</b>                                                                                                                                                                                                                                                                               |   |